

Potential Utilization of Climbing Bamboo Species in the Philippines

Elvina O. Bondad Oliver S. Marasigan

Marina A. Alipon Shereyl A. Daguinod

Most of the bamb<u>oo spe</u>cies utilized in t Philippines were erect species es

m

coun

Fifth in number of plant species and maintains bing bamboos lack information of the world`s flora regarding 5,000 properties ha of plantation

Objective of the study

To determine the possible end-uses of climbing bamboo in the Philippines based on their physical and mechanical properties

Methodology

Twelve species of climbing bamboo from seven provinces in Luzon Island, Philippines were sampled, with five mature culms aged 4–5 years collected per species, each segmented into bottom, middle, and top portions.

Species Species

COMMON NAME	SCIENTIFIC NAME	COLLECTION SITE
Bolo	Cyrtochloa fenixii	Nueva Era, Ilocos Norte
Baitu	Cyrtochloa hirsuta	Brgy. San Pablo, Dinalupihan, Bataan
Luzon bikal	Cyrtochloa luzonica	Masinloc, Zambales
Bikal baboy	Cyrtochloa major	Brgy. San Pablo, Dinalupihan, Bataan
Puser	Cyrtochloa puser	Batiwtiw, Tayum, Abra
Bukawe	Crytochloa toppingii	Brgy. Aldea, Tanay, Rizal
Bagtok	Cephalostachyum mindorense	Brgy. Inhobol, Mamburao, Occidental Mindoro
Yaho	Cephalostachyum mindorense	Brgy. Inhobol, Mamburao, Occidental Mindoro
Bikal	Dinochloa acutiflora	Brgy. Tala, Rizal, Laguna
Tagisi	Dinochloa dielsiana	Masinloc, Zambales
Elmer bikal	Dinochloa elmeri	Masinloc, Zambales
Baguisan	Dinochloa pubiramea	Batiwtiw, Tavum, Abra

Properties Determined

Physical Properties

Mechanical Properties

Moisture Content Relative Density

Static Bending

Shrinkage Properties

Compression Shear strength

Statistical Analysis

A two-factor factorial analysis of variance in a randomized complete block design was performed at a 95% confidence level. Further analysis was conducted using Tukey's honestly significant difference test.

Results and Discussion

Moisture

Relative

Shrinkage Shrinkage

AGONG PILIPINAS

Mechanical Noverties

Mechanica	l properties	Bolo	Baitu	Luzon bikal	Bikal baboy	Bagtok	Yaho	Puser	Bukawe	Bikal	Tagisi	Elmer bikal	Baguisan
	FSEL (MPa)	14.71 ^{gh}	15.20 ^{fgh}	46.48 ^a	22.38 ^{cd}	40.69 ^b	21.57 ^{de}	16.32 ^{efgh}	27.42 ^c	11.54 ^h	19.72 ^{defg}	20.69def	16.22 ^{efgh}
Static bending	MOR (MPa)	26.64 ^g	33.40 ^{fg}	70.07 ^b	62.52 ^{bc}	79.05 ^a	44.30 ^{de}	40.97 ^{def}	45.01 ^{de}	43.07 ^{de}	37.86 ^{ef}	61.69 ^c	49.64 ^d
	MOE (GPa)	4.69 ^{de}	8.31 ^b	11.50 ^a	11.12 ^a	11.36 ^a	8.56 ^b	8.21 ^b	7.45 ^{bc}	4.02 ^e	3.85 ^e	5.97 ^{cd}	5.70 ^{cde}
Compression	With node	22.81 ^e	35.59 ^{cd}	56.11 ^a	36.88 ^{bcd}	42.66 ^b	31.19 ^d	39.09 ^{bc}	34.95 ^{cd}	16.90 ^f	15.99 ^f	25.27 ^e	15.11 ^f
parallel-to- grain (MPa)	Without node	20.69 ^f	33.13 ^d	58.52 ^a	39.46 ^{bc}	44.60 ^b	30.81 ^{de}	40.91 ^{bc}	36.34 ^{cd}	20.31 ^f	15.86 ^{fg}	27.20 ^e	13.82 ^g
Shear	With node	8.72 ^{cd}	10.16 ^{bc}	9.93 ^{bc}	7.76 ^{de}	13.22 ^a	9.35 ^c	10.94 ^b	10.29 ^{bc}	5.07 ^f	6.90 ^e	7.51 ^{de}	1.62 ^g
strength (MPa)	Without node	6.29 ^{cde}	7.53 ^{abc}	6.08 ^{de}	6.55 ^{cde}	8.68 ^a	7.44 ^{bc}	7.19 ^{bcd}	8.35 ^{ab}	5.40 ^e	5.40 ^e	6.35 ^{cde}	1.79 ^f

Note: means with the same letter are not significantly different (a, g - highest, lowest value).

Relative Density & Mechanical Properties

Physical Properties

Physical properties	Height levels	Bolo	Baitu	Luzon bikal	Bikal baboy	Bagtok	Yaho	Puser	Bukawe	Bikal	Tagisi	Elmer bikal	Baguisan
	Bottom	191.10 ^a	103.88 ^a	69.50 ^a	100.29 ^a	88.39 ^a	122.51 ^a	122.13 ^a	93.40 ^a	219.18 ^a	167.80 ^a	165.43 ^a	205.21 ^a
Moisture	Middle	171.20 ^a	93.90 ^a	67.60 ^a	103.26 ^a	91.73 ^a	104.73 ^a	97.92 ^a	89.50 ^a	198.91 ^a	185.68 ^a	167.36 ^a	188.49 ^a
	Тор	165.80 ^a	87.98 ^a	55.70 ^b	94.68 ^a	100.09 ^a	100.84 ^a	8 7.42 ^a	93.00 ^a	193.40 ^a	187.05 ^a	166.14 ^a	160.83 ^a
	Bottom	0.39 ^a	0.58 ^a	0.78 ^a	0.57 ^a	0.64 ^a	0.53 ^a	0.54 ^a	0.61 ^a	0.36 ^a	0.43 ^a	0.44^{a}	0.36 ^a
Relative	Middle	0.43 ^a	0.52 ^a	0.76 ^a	0.56 ^a	0.64 ^a	0.58 ^a	0.60 ^b	0.61 ^a	0.39 ^a	0.40 ^a	0.43 ^a	0.37 ^a
Тор	Тор	0.45 ^a	0.66 ^a	0.78 ^a	0.58 ^a	0.61 ^a	0.58 ^a	0.63 ^b	0.59 ^a	0.40 ^a	0.39 ^a	0.44 ^a	0.41 ^a
Tangential	Bottom	3.51 ^a	4.03 ^a	4.65 ^a	3.30 ^a	5.66 ^a	2.65 ^a	3.78 ^a	6.19 ^a	2.90 ^a	3.80 ^a	3.27 ^a	16.13 ^a
	Middle	3.44 ^a	3.40 ^{ab}	4.28 ^a	3.01 ^a	4.60 ^a	3.03 ^a	3.45 ^a	4.79 ^a	2.01 ^a	3.93 ^a	3.25 ^a	11.87 ^{ab}
sin nikuge (70)	Тор	1.55 ^a	2.74 ^b	4.61 ^a	3.30 ^a	5.13 ^a	2.59 ^a	3.27 ^a	3.81 ^a	1.70 ^a	4.17 ^a	4.48 ^a	7.99 ^b
	Bottom	7.80 ^a	5.07 ^a	5.17 ^a	6.52 ^a	8.88 ^a	5.14 ^a	5.56 ^{ab}	7.41 ^a	6.18 ^a	5.39 ^a	3.99 ^a	17.59 ^a
Radial	Middle	6.88 ^{ab}	5.60 ^a	6.15 ^a	8.07 ^a	11.79 ^a	4.29 ^a	4.90 ^b	7.30 ^a	5.63 ^a	4.64 ^a	3.30 ^a	15.75 ^{ab}
sin nikage (70)	Тор	5.22 ^b	5.11 ^a	6.57 ^a	4.97 ^a	9.00 ^b	4.54 ^a	6.57 ^a	6.19 ^a	5.91 ^a	4.86 ^a	3.99 ^a	9.51 ^b
	Bottom	0.16 ^a	0.18 ^a	0.08 ^a	0.12 ^a	0.07 ^a	0.96 ^a	0.12 ^a	0.04 ^a	0.20 ^a	0.19 ^a	0.34 ^a	0.32 ^a
Longitudinal	Middle	0.20 ^a	0.12 ^a	0.02 ^a	0.13 ^a	0.13 ^a	1.10 ^a	0.15 ^a	0.03 ^a	0.09 ^a	0.10 ^a	0.32 ^a	0.37 ^a
shrinkage (%)	Тор	0.15a	0.24a	0.07a	0.15a	0.10a	0.65a	0.09a	0.05a	0.08a	0.17a	0.43a	0.33a
	Bottom	11.02a	9.18a	9.57a	8.86a	14.02a	7.65a	9.13a	13.16a	8.80a	8.98a	7.14ab	30.54a
Volumetric	Middle	10.06a	9.07a	10.16a	7.64a	11.40a	7.19a	8.19a	11.80ab	7.29a	8.39a	6.44b	25.52ab
sinnkage (%)	Тор	6.68b	7.12b	10.89a	8.11a	11.14a	7.02a	9.64a	9.76b	7.50a	8.84a	8.18a	16.68b

Note: means with the same letter are not significantly different (a, b - highest, lowest value).

Mechanical Properties

Mechanical properties	Height levels	Bolo	Baitu	Luzon bikal	Bikal baboy	Bagtok	Yaho	Puser	Bukawe	Bikal	Tagisi	Elmer bikal	Baguisan
	Bottom	15.71 ^a	19.13 ^a	51.97 ^a	22.34 ^a	46.98 ^a	25.78 ^a	22.47 ^a	30.11 ^a	13.02 ^a	21.51 ^a	21.60 ^a	14.93 ^a
FSEL (MPa)	Middle	14.30 ^a	12.60 ^b	44.43 ^b	21.18 ^a	43.71 ^a	19.19 ^a	16.03 ^a	25.83 ^a	9.45 ^a	18.20 ^a	19.32 ^a	15.19 ^a
	Тор	14.12 ^a	13.98 ^b	43.04 ^b	23.64 ^a	31.39 ^a	19.77 ^a	10.47 ^a	26.62 ^a	12.16 ^a	19.48 ^a	21.16 ^a	18.56 ^a
	Bottom	30.40 ^a	39.38 ^a	83.91 ^a	69.58 ^a	97.09 ^a	60.08 ^a	49.74 ^a	56.42 ^a	50.75 ^a	39.70 ^a	62.88 ^a	45.63 ^a
MOR (MPa)	Middle	26.19 ^a	30.79 ^a	63.87 ^b	59.90 ^a	80.93 ^a	35.53 ^b	33.81 ^a	39.68 ^b	38.47 ^a	36.32 ^a	60.20 ^a	49.82 ^a
	Тор	23.35 ^a	30.04 ^a	62.43 ^b	58.08 ^a	59.15 ^b	37.30 ^b	39.37 ^a	38.94 ^b	40.01 ^a	37.58 ^a	62.01 ^a	53.47 ^a
MOE (GPa)	Bottom	4.94 ^a	8.04 ^a	11.90 ^a	14.06 ^a	12.69 ^a	9.94 ^a	8.49 ^a	7.81 ^a	3.75 ^a	3.92 ^a	5.87 ^a	4.47 ^b
	Middle	5.04 ^a	8.94 ^a	11.85 ^a	10.15 ^a	12.10 ^a	7.70 ^a	8.04 ^a	6.88 ^a	4.14 ^a	3.70 ^a	6.07 ^a	5.55 ^b
	Тор	4.09 ^a	7.98 ^a	10.76 ^a	9.18 ^a	9.31 ^a	8.05 ^a	8.11 ^a	7.68 ^a	4.18 ^a	3.95 ^a	5.98 ^a	7.06 ^b

Note: means with the same letter are not significantly different (a, b - highest, lowest value).

Mechanical Properties

Mechanical properties	Height levels	Bolo	Baitu	Luzon bikal	Bikal baboy	Bagtok	Yaho	Puser	Bukawe	Bikal	Tagisi	Elmer bikal	Baguisan
Compression	Bottom	22.45 ^a	36.17 ^a	52.15 ^a	41.07 ^a	43.48 ^a	31.42 ^a	38.48 ^a	37.01 ^a	16.33 ^a	16.56 ^a	24.51 ^a	12.39 ^b
parallel-to-grain	Middle	26.35 ^a	35.13 ^a	57.72 ^a	35.97 ^a	47.92 ^a	29.72 ^a	42.42 ^a	35.45 ^a	17.34 ^a	16.17 ^a	24.74 ^a	15.34 ^{ab}
(with node) (MPa)	Тор	19.65 ^a	35.47 ^a	58.47 ^a	33.61 ^a	36.58 ^a	32.44 ^a	36.39 ^a	32.39 ^a	17.05 ^a	15.26 ^a	26.56 ^a	17.62 ^a
Commention	Bottom	18.70 ^a	26.79 ^b	54.54 ^b	42.35 ^a	46.87 ^a	29.09 ^b	38.27 ^b	34.46 ^a	18.49 ^a	15.28 ^a	24.63 ^a	12.32 ^a
parallel-to-grain	Middle	20.94 ^a	34.95 ^a	50.78 ^b	37.59 ^a	44.92 ^a	29.22 ^b	44.41 ^a	38.39 ^a	20.85 ^a	14.67 ^a	26.36 ^a	13.30 ^a
(without node)	Тор	22.46 ^a	37.67 ^a	70.26 ^a	38.47 ^a	42.03 ^a	34.13 ^a	40.07 ^b	36.17 ^a	21.59 ^a	17.63 ^a	30.63 ^a	15.85 ^a
	Bottom	7.94 ^a	10.56 ^a	9.40 ^a	7.95 ^a	12.19 ^b	9.29 ^a	12.50 ^a	10.17 ^a	4.90 ^a	7.49 ^a	7.89 ^a	1.75 ^a
Shear strength (with node)	Middle	9.58 ^a	10.61 ^a	10.56 ^a	8.03 ^a	14.64 ^a	8.99 ^a	11.78 ^a	10.93 ^a	5.22 ^a	7.22 ^a	6.67 ^a	1.58 ^a
((iiii iiouc)	Тор	8.62 ^a	9.62 ^a	9.84 ^a	7.31 ^a	12.84 ^{ab}	9.79 ^a	8.55 ^a	9.79 ^a	5.09 ^a	6.02 ^a	7.99 ^a	1.56 ^a
Shear strength (without node)	Bottom	5.15 ^a	7.80 ^a	8.07 ^a	6.94 ^a	8.99 ^a	6.96 ^a	7.48 ^a	7.67 ^a	5.21 ^a	5.65 ^a	6.25 ^a	1.79 ^a
	Middle	7.14 ^a	7.99 ^a	5.37 ^a	6.21 ^a	8.56 ^a	7.62 ^a	8.04 ^a	8.78 ^a	5.46 ^a	5.75 ^a	6.23 ^a	1.83 ^a
	Тор	6.59 ^a	6.81 ^a	4.81 ^a	6.52 ^a	8.48 ^a	7.76 ^a	6.05 ^a	8.62 ^a	5.54 ^a	4.81 ^a	6.58 ^a	1.78 ^a

Note: means with the same letter are not significantly different (a, b - highest, lowest value).

Potential Mications

Potential /////ons

STRENGTH CLASSIFICATION	COMMON NAME	SCIENTIFIC NAME	POTENTIAL USES					
	Bolo	Cyrtochloa fenixii						
Medium Strength	Tagisi	Dinochloa dielsiana	Suitable for high-grade furniture, paneling, and musical instruments					
	Elmer bikal	Dinochloa elmeri						
Moderately low	Bikal	Dinochloa acutiflora	Suitable for pulp and paper, and low-grade					
strength	Baguisan	Dinochloa pubiramea	importance					

Conclusion

The study suggests that the Philippine bamboo industry could utilize climbing bamboo as raw materials for various products.

Baitu, Luzon bikal, bikal baboy, bagtok, yaho, puser, and bukawe – potential alternatives for construction, high-grade furniture, and flooring, requiring strength and durability without large diameters. Bolo, tagisi, and elmer bikal can be utilized for high-grade furniture, paneling, and musical instruments.

Bikal and baguisan are recommended to be used for pulp and paper and low-grade furniture

In utilizing this species, consideration of height levels is necessary.

Bamboohay! Thank you very much.

Oliver S. Marasigan

Forest Products Research and Development Institute – Philippines oliver.marasigan@fprdi.dost.gov.ph